# kldload dtraceall
DTrace, also known as Dynamic Tracing, was developed by Sun™ as a tool for locating performance bottlenecks in production and pre-production systems. In addition to diagnosing performance problems, DTrace can be used to help investigate and debug unexpected behavior in both the FreeBSD kernel and in userland programs.
DTrace is a remarkable profiling tool, with an impressive array of features for diagnosing system issues. It may also be used to run pre-written scripts to take advantage of its capabilities. Users can author their own utilities using the DTrace D Language, allowing them to customize their profiling based on specific needs.
The FreeBSD implementation provides full support for kernel DTrace and experimental support for userland DTrace.
Userland DTrace allows users to perform function boundary tracing for userland programs using the pid
provider, and to insert static probes into userland programs for later tracing.
Some ports, such as databases/postgres-server
and lang/php56
have a DTrace option to enable static probes.
FreeBSD 10.0-RELEASE has reasonably good userland DTrace support, but it is not considered production ready.
In particular, it is possible to crash traced programs.
The official guide to DTrace is maintained by the Illumos project at DTrace Guide.
After reading this chapter, you will know:
What DTrace is and what features it provides.
Differences between the Solaris™ DTrace implementation and the one provided by FreeBSD.
How to enable and use DTrace on FreeBSD.
Before reading this chapter, you should:
Understand UNIX® and FreeBSD basics ([_basics]).
Have some familiarity with security and how it pertains to FreeBSD ([_security]).
While the DTrace in FreeBSD is similar to that found in Solaris™ , differences do exist. The primary difference is that in FreeBSD, DTrace is implemented as a set of kernel modules and DTrace can not be used until the modules are loaded. To load all of the necessary modules:
# kldload dtraceall
Beginning with FreeBSD 10.0-RELEASE, the modules are automatically loaded when dtrace
is run.
FreeBSD uses the DDB_CTF
kernel option to enable support for loading CTF
data from kernel modules and the kernel itself.
CTF
is the Solaris™
Compact C Type Format which encapsulates a reduced form of debugging information similar to DWARF
and the venerable stabs. CTF
data is added to binaries by the ctfconvert
and ctfmerge
build tools.
The ctfconvert
utility parses DWARF
ELF
debug sections created by the compiler and ctfmerge
merges CTF
ELF
sections from objects into either executables or shared libraries.
Some different providers exist for FreeBSD than for Solaris™
.
Most notable is the dtmalloc
provider, which allows tracing malloc()
by type in the FreeBSD kernel.
Some of the providers found in Solaris™
, such as cpc
and mib
, are not present in FreeBSD.
These may appear in future versions of FreeBSD.
Moreover, some of the providers available in both operating systems are not compatible, in the sense that their probes have different argument types.
Thus, D
scripts written on Solaris™
may or may not work unmodified on FreeBSD, and vice versa.
Due to security differences, only root
may use DTrace on FreeBSD. Solaris™
has a few low level security checks which do not yet exist in FreeBSD.
As such, the /dev/dtrace/dtrace
is strictly limited to root
.
DTrace falls under the Common Development and Distribution License (CDDL
) license.
To view this license on FreeBSD, see /usr/src/cddl/contrib/opensolaris/OPENSOLARIS.LICENSE
or view it online at http://opensource.org/licenses/CDDL-1.0.
While a FreeBSD kernel with DTrace support is BSD
licensed, the CDDL
is used when the modules are distributed in binary form or the binaries are loaded.
In FreeBSD 9.2 and 10.0, DTrace support is built into the GENERIC
kernel.
Users of earlier versions of FreeBSD or who prefer to statically compile in DTrace support should add the following lines to a custom kernel configuration file and recompile the kernel using the instructions in [_kernelconfig]:
options KDTRACE_HOOKS
options DDB_CTF
makeoptions DEBUG=-g
makeoptions WITH_CTF=1
Users of the AMD64 architecture should also add this line:
options KDTRACE_FRAME
This option provides support for FBT
.
While DTrace will work without this option, there will be limited support for function boundary tracing.
Once the FreeBSD system has rebooted into the new kernel, or the DTrace kernel modules have been loaded using kldload dtraceall
, the system will need support for the Korn shell as the DTrace Toolkit has several utilities written in ksh
.
Make sure that the shells/ksh93
package or port is installed.
It is also possible to run these tools under shells/pdksh
or shells/mksh
.
Finally, install the current DTrace Toolkit, a collection of ready-made scripts for collecting system information.
There are scripts to check open files, memory, CPU
usage, and a lot more.
FreeBSD 10 installs a few of these scripts into /usr/share/dtrace
.
On other FreeBSD versions, or to install the full DTrace Toolkit, use the sysutils/DTraceToolkit
package or port.
The scripts found in |
The DTrace Toolkit includes many scripts in the special language of DTrace. This language is called the D language and it is very similar to C++. An in depth discussion of the language is beyond the scope of this document. It is covered extensively in the Illumos Dynamic Tracing Guide.
DTrace scripts consist of a list of one or more probes , or instrumentation points, where each probe is associated with an action. Whenever the condition for a probe is met, the associated action is executed. For example, an action may occur when a file is opened, a process is started, or a line of code is executed. The action might be to log some information or to modify context variables. The reading and writing of context variables allows probes to share information and to cooperatively analyze the correlation of different events.
To view all probes, the administrator can execute the following command:
# dtrace -l | more
Each probe has an ID
, a PROVIDER
(dtrace or fbt), a MODULE
, and a FUNCTION NAME
.
Refer to dtrace(1)
for more information about this command.
The examples in this section provide an overview of how to use two of the fully supported scripts from the DTrace Toolkit: the hotkernel
and procsystime
scripts.
The hotkernel
script is designed to identify which function is using the most kernel time.
It will produce output similar to the following:
# cd /usr/share/dtrace/toolkit # ./hotkernelSampling... Hit Ctrl-C to end.
As instructed, use the Ctrl+C key combination to stop the process. Upon termination, the script will display a list of kernel functions and timing information, sorting the output in increasing order of time:
kernel`_thread_lock_flags 2 0.0% 0xc1097063 2 0.0% kernel`sched_userret 2 0.0% kernel`kern_select 2 0.0% kernel`generic_copyin 3 0.0% kernel`_mtx_assert 3 0.0% kernel`vm_fault 3 0.0% kernel`sopoll_generic 3 0.0% kernel`fixup_filename 4 0.0% kernel`_isitmyx 4 0.0% kernel`find_instance 4 0.0% kernel`_mtx_unlock_flags 5 0.0% kernel`syscall 5 0.0% kernel`DELAY 5 0.0% 0xc108a253 6 0.0% kernel`witness_lock 7 0.0% kernel`read_aux_data_no_wait 7 0.0% kernel`Xint0x80_syscall 7 0.0% kernel`witness_checkorder 7 0.0% kernel`sse2_pagezero 8 0.0% kernel`strncmp 9 0.0% kernel`spinlock_exit 10 0.0% kernel`_mtx_lock_flags 11 0.0% kernel`witness_unlock 15 0.0% kernel`sched_idletd 137 0.3% 0xc10981a5 42139 99.3%
This script will also work with kernel modules.
To use this feature, run the script with -m
:
# ./hotkernel -mSampling... Hit Ctrl-C to end. ^C MODULE COUNT PCNT 0xc107882e 1 0.0% 0xc10e6aa4 1 0.0% 0xc1076983 1 0.0% 0xc109708a 1 0.0% 0xc1075a5d 1 0.0% 0xc1077325 1 0.0% 0xc108a245 1 0.0% 0xc107730d 1 0.0% 0xc1097063 2 0.0% 0xc108a253 73 0.0% kernel 874 0.4% 0xc10981a5 213781 99.6%
The procsystime
script captures and prints the system call time usage for a given process ID
(PID
) or process name.
In the following example, a new instance of /bin/csh
was spawned.
Then, procsystime
was executed and remained waiting while a few commands were typed on the other incarnation of csh
.
These are the results of this test:
# ./procsystime -n cshTracing... Hit Ctrl-C to end... ^C Elapsed Times for processes csh, SYSCALL TIME (ns) getpid 6131 sigreturn 8121 close 19127 fcntl 19959 dup 26955 setpgid 28070 stat 31899 setitimer 40938 wait4 62717 sigaction 67372 sigprocmask 119091 gettimeofday 183710 write 263242 execve 492547 ioctl 770073 vfork 3258923 sigsuspend 6985124 read 3988049784
As shown, the read()
system call used the most time in nanoseconds while the getpid()
system call used the least amount of time.